Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Pract Lab Med ; 39: e00390, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38715659

ABSTRACT

Introduction: This study evaluated the clinical and analytical performances of the Access HBsAg and the Access HBsAg Confirmatory assays on the DxI 9000 Access Immunoassay Analyzer (Beckman Coulter, Inc.). Materials and methods: Diagnostic specificity and sensitivity of the Access HBsAg and Access HBsAg Confirmatory assays were evaluated by comparing the Access assays to the final HBsAg sample status determined using the Architect, PRISM, or Elecsys HBsAg assays, along with Architect or PRISM HBsAg Confirmatory assays. Imprecision, sensitivity on seroconversion panels, analytical sensitivity on WHO, and recognition of HBV variants were also evaluated. Results: A total of 7534 samples were included in the analysis (6047 blood donors, 1032 hospitalized patients, 455 positive patients' samples). Access HBsAg assay sensitivity and specificity were at 100.00% (99.19-100.0) and 99.92% (99.82-99.97), respectively. Sensitivity of Access HBsAg Confirmatory assay was 100.00% (99.21-100.0) on the 464 HBsAg positive samples. The use of a high positive algorithm for the Access HBsAg assay, wherein samples with S/CO ≥ 100.00 were considered positive without requiring repeat or confirmatory testing, was successfully evaluated with all 450 specimens with S/CO greater than 100.00 (sensitivity 100.00%; 99.19-100.0). Access HBsAg assay demonstrated good analytical performance, equivalent recognition of seroconversion panels compared to Architect assay, and an analytical sensitivity between 0.022 and 0.025 IU/mL. All HBV genotypes, subtypes and mutants were well detected without analytical sensitivity loss. Conclusion: Access HBsAg and Access HBsAg Confirmatory assays demonstrated robust performances. They provide low samples volume requirements and a simplified process, no systematic retesting for high positive samples.

2.
J Med Virol ; 95(11): e29247, 2023 11.
Article in English | MEDLINE | ID: mdl-38009713

ABSTRACT

The presence of free severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid-antigen in sera (N-antigenemia) has been shown in COVID-19 patients. However, the link between the quantitative levels of N-antigenemia and COVID-19 disease severity is not entirely understood. To assess the dynamics and clinical association of N-antigen sera levels with disease severity in COVID-19 patients, we analyzed data from patients included in the French COVID cohort, with at least one sera sample between January and September 2020. We assessed N-antigenemia levels and anti-N IgG titers, and patient outcomes was classified in two groups, survival or death. In samples collected within 8 days since symptom onset, we observed that deceased patients had a higher positivity rate (93% vs. 81%; p < 0.001) and higher median levels of predicted N-antigenemia (2500 vs. 1200 pg/mL; p < 0.001) than surviving patients. Predicted time to N-antigen clearance in sera was prolonged in deceased patients compared to survivors (23.3 vs 19.3 days; p < 0.0001). In a subset of patients with both sera and nasopharyngeal (NP) swabs, predicted time to N-antigen clearance in sera was prolonged in deceased patients (p < 0.001), whereas NP viral load clearance did not differ between the groups (p = 0.07). Our results demonstrate a strong relationship between N-antigenemia levels and COVID-19 severity on a prospective cohort.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Prospective Studies , Antibodies, Viral , Patient Acuity
3.
Clin Microbiol Infect ; 29(12): 1538-1550, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666450

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is widely known as a frequent cause of respiratory distress among adults, particularly in older people. Recent years have witnessed several improvements in respiratory virus detection, leading to more questions about therapeutic management strategies. OBJECTIVES: This narrative review focuses on the RSV burden in older people and adults with risk factors and provides an update on the main recent developments regarding managing this infection. SOURCES: A comprehensive PubMed search was conducted till August 2023 to identify studies on RSV among the adult population. We included observational studies, RCTs on vaccines, and different therapies. CONTENT: This review should give clinicians an overview of RSV epidemiology and burden among older people and adults with pre-existing risk factors, the most recent randomized clinical trials on RSV vaccines, and the existing data on the different therapeutics existing and under development. IMPLICATIONS: There is a growing body of evidence on RSV burden in adults. The landscape of preventive and curative treatments is quickly evolving.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Adult , Humans , Aged , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/adverse effects , Risk Factors
4.
Microorganisms ; 11(7)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37512952

ABSTRACT

The physiopathological mechanisms responsible for digestive symptoms in COVID-19 patients are still unclear. The aim of this study was to determine the influence of faecal viral shedding on digestive symptoms and propose differential diagnoses in order to understand the gastrointestinal clinical spectrum in acute cases of COVID-19. All patients managed between March and May 2020, from whom stool samples were collected for microbiological investigations, were included. Microbiological analysis consisted of syndromic PCR screening and microscopic parasitological examination supplemented with microsporidia and multiplex protozoa PCR. SARS-CoV-2 infection was diagnosed via viral detection in respiratory and frozen stool samples, completed via serological test when necessary. Epidemiological, clinical, radiological, and biological data and clinical courses were compared according to COVID-19 status and faecal SARS-CoV-2 shedding and enteric co-infection status. The sample included 50 COVID+ and 67 COVID- patients. Faecal viral shedding was detected in 50% of stool samples and was associated with a higher viral load in the upper respiratory tract. Detected enteric pathogens were not different between subjects with different COVID-19 statuses or faecal SARS-CoV-2 shedding and had no impact on the clinical course for COVID-19 patients. The connection between SARS-CoV-2 shedding and enteric pathogen co-infection involvement in gastrointestinal presentation and clinical course is still unclear, suggesting other processes are involved in digestive disorders in COVID-19 patients.

5.
Elife ; 122023 04 26.
Article in English | MEDLINE | ID: mdl-37159510

ABSTRACT

Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from January 1 to December 31, 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries, and French administrative regions) and time periods (from January 1 to July 25, 2020, and from July 26 to December 31, 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe, and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, the United Kingdom, Belgium, and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively, during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe, and worldwide in 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Pandemics , Europe/epidemiology , France/epidemiology
6.
Clin Microbiol Infect ; 29(7): 942.e1-942.e6, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36708772

ABSTRACT

OBJECTIVES: The COVID-19 pandemic has highlighted the high diagnostic accuracy of the nasopharyngeal swab (including in intensive care unit (ICU) patients). This study aimed to compare nasopharyngeal swab and bronchoalveolar lavage (BAL) results for non-SARS-CoV-2 viruses in patients with suspected pneumonia. METHODS: A retrospective analysis was performed in one French academic hospital on consecutive adults from 2012 to 2018 and tested nasopharyngeal swab and BAL within 24 hours by using multiplex PCR. The agreement in pathogen detection between nasopharyngeal swab and BAL was evaluated. RESULTS: Patients were primarily men (n = 178/276, 64.5%), with a median age of 60 years (IQR: 51-68 years). Of the 276 patients, 169 (61%) were admitted to the ICU for acute respiratory distress. We detected at least one respiratory virus in 34.4% of the nasopharyngeal swabs (n = 95/276) and 29.0% of BAL (n = 80/276). Two or more viruses were detected in 2.5% of the nasopharyngeal swabs (n = 7/276) and 2.2% of BAL (n = 6/276). Rhinovirus/enteroviruses were the most frequently detected viral group in 10.2% (n = 29/285) of the nasopharyngeal swabs and 9.5% (n = 27/285) of BAL, followed by influenza A, detected in 5.6% (n = 16/285) of the nasopharyngeal swabs and 4.9% (n = 14/285) of BAL. Overall agreement was 83.7% (n = 231/276 (95% CI [78.7%, 87.7%])) (i.e. same pathogen or pathogen combination was identified in the nasopharyngeal swab and BAL for 231 patients). Rhinovirus/enterovirus (n = 29/231) and respiratory syncytial virus (n = 13/231) had the lowest agreement of 62.1% (n = 18/29 (95% CI [42.4%-78.7%])) and 61.5% (n = 8/13 (95% CI [32.3%-84.9%])), respectively). CONCLUSIONS: There was a good agreement between nasopharyngeal swabs and BAL in detecting respiratory viruses among adult patients with suspected pneumonia. However, these data still encourage BAL in the case of a negative nasopharyngeal swab.


Subject(s)
COVID-19 , Viruses , Male , Humans , Adult , Middle Aged , Aged , Retrospective Studies , Pandemics , Bronchoalveolar Lavage , Nasopharynx
7.
Virus Res ; 323: 198950, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36181977

ABSTRACT

Human respiratory syncytial virus (RSV) is responsible of lower respiratory tract infections which may be severe in infants, elderly and immunocompromised adults. Europe and North-American countries have observed a massive reduction of RSV incidence during the 2020-2021 winter season. Using a systematic RSV detection coupled to SARS-CoV-2 for all adult patients admitted at the Foch hospital (Suresnes, France) between January and March 2021 (n = 11,324), only eight RSV infections in patients with prolonged RNA shedding were diagnosed. RSV whole-genome sequencing revealed that six and two patients were infected by RSV groups A and B, respectively. RSV carriage lasted from 7 to at least 30 days disregarding of RSV lineage. The most prolonged RSV shedding was observed in an asymptomatic patient. We detected novel patient-specific non-synonymous mutations in the G glycoprotein gene, including a double identical mutation in the repeated region for one patient. No additional mutation occurred in the RSV genome over the course of infection in the four patients tested for. In conclusion, our results suggest that the temporal shift in the RSV epidemic is not likely to be explained by the emergence of a high frequency, unreported variant. Moreover, prolonged RSV carriages in asymptomatic patients could play a role in virus spread.

8.
Front Immunol ; 13: 1010140, 2022.
Article in English | MEDLINE | ID: mdl-36389717

ABSTRACT

The emerging SARS-CoV-2 virus has affected the entire world with over 600 million confirmed cases and 6.5 million deaths as of September 2022. Since the beginning of the pandemic, several variants of SARS-CoV-2 have emerged, with different infectivity and virulence. Several studies suggest an important role of neutrophils in SARS-Cov-2 infection severity, but data about direct activation of neutrophils by the virus is scarce. Here, we studied the in vitro activation of human neutrophils by SARS-CoV-2 variants of concern (VOCs). In our work, we show that upon stimulation with SARS-Cov-2 infectious particles, human healthy resting neutrophils upregulate activation markers, degranulate IL-8, produce Reactive Oxygen Species and release Neutrophil Extracellular Traps. Neutrophil activation was dependent on TLR7/8 and IRF3/STING. We then compared the activation potential of neutrophils by SARS-CoV-2 variants and showed a significantly increased activation by the Delta variant and a decreased activation by the Omicron variant as compared to the initial strain. In this study, we demonstrate that the SARS-Cov-2 virus can directly activate neutrophils in COVID-19 and that the different VOCs had differences in neutrophil activation intensity that mirror the differences of clinical severity. These data highlight the need to address neutrophil-virus interactions as a potential target for therapeutic intervention in SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neutrophils
9.
Microbiol Spectr ; 10(5): e0215222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36125289

ABSTRACT

Monoclonal antibodies (MAbs) targeting the Spike glycoprotein of SARS-CoV-2 is a key strategy to prevent severe COVID-19. Here, the efficacy of two monoclonal antibody bitherapies against SARS-CoV-2 was assessed on 92 patients at high risk of severe COVID-19 between March and October 2021 (Bichat-Claude Bernard Hospital, Paris, France). Nine patients died despite appropriate management. From 14 days following treatment initiation, we observed a slower viral load decay for patients treated with the bitherapy Bamlanivimab/Etsevimab compared to the Casirivimab/Imdevimab association therapy (P = 0.045). The emergence of several mutations on the Spike protein known to diminish antiviral efficacy was observed from 1 to 3 weeks after infusion. The Q493R mutation was frequently selected, located in a region of joint structural overlap by Bamlanivimab/Etsevimab antibodies. Despite that this study was done on former SARS-CoV-2 variants (Alpha and Delta), the results provide new insights into resistance mechanisms in SARS-CoV-2 antibodies neutralization escape and should be considered for current and novel variants. IMPORTANCE Monoclonal antibody bitherapies (MAbs) are commonly prescribed to treat severe SARS-CoV-2-positive patients, and the rapid growth of resistance mutation emergence is alarming globally. To explore this issue, we conducted both clinical and genomic analyses of SARS-CoV-2 in a series of patients treated in 2021. We first noticed that the two dual therapies prescribed during the study had different kinetics of viral load decay. Rapidly after initiation of the treatments, resistance mutations emerged in the interface between the MAbs and the target Spike glycoprotein, demonstrating the importance to continuously screen the viral genome during treatment course. Taken together, the results highlight that viral mutations may emerge under selective pressure, conferring a putative competitive advantage, and could rapidly spread, as observed for the Omicron variant.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/therapeutic use , Neutralization Tests , Antibodies, Viral , Antiviral Agents/therapeutic use , Antibodies, Neutralizing
10.
Viruses ; 14(7)2022 07 13.
Article in English | MEDLINE | ID: mdl-35891509

ABSTRACT

The SARS-CoV-2 variant of concern, α, spread worldwide at the beginning of 2021. It was suggested that this variant was associated with a higher risk of mortality than other variants. We aimed to characterize the genetic diversity of SARS-CoV-2 variants isolated from patients with severe COVID-19 and unravel the relationships between specific viral mutations/mutational patterns and clinical outcomes. This is a prospective multicenter observational cohort study. Patients aged ≥18 years admitted to 11 intensive care units (ICUs) in hospitals in the Greater Paris area for SARS-CoV-2 infection and acute respiratory failure between 1 October 2020 and 30 May 2021 were included. The primary clinical endpoint was day-28 mortality. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing (Illumina COVIDSeq). In total, 413 patients were included, 183 (44.3%) were infected with pre-existing variants, 197 (47.7%) were infected with variant α, and 33 (8.0%) were infected with other variants. The patients infected with pre-existing variants were significantly older (64.9 ± 11.9 vs. 60.5 ± 11.8 years; p = 0.0005) and had more frequent COPD (11.5% vs. 4.1%; p = 0.009) and higher SOFA scores (4 [3-8] vs. 3 [2-4]; 0.0002). The day-28 mortality was no different between the patients infected with pre-existing, α, or other variants (31.1% vs. 26.2% vs. 30.3%; p = 0.550). There was no association between day-28 mortality and specific variants or the presence of specific mutations. At ICU admission, the patients infected with pre-existing variants had a different clinical presentation from those infected with variant α, but mortality did not differ between these groups. There was no association between specific variants or SARS-CoV-2 genome mutational pattern and day-28 mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Critical Illness , Genomics , Humans , Prospective Studies , SARS-CoV-2/genetics
11.
JAMA Intern Med ; 182(9): 906-916, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35788622

ABSTRACT

Importance: The benefit of high-dose dexamethasone and oxygenation strategies vs standard of care for patients with severe acute hypoxemic respiratory failure (AHRF) caused by COVID-19 pneumonia is debated. Objectives: To assess the benefit of high-dose dexamethasone compared with standard of care dexamethasone, and to assess the benefit of high-flow nasal oxygen (HFNo2) or continuous positive airway pressure (CPAP) compared with oxygen support standard of care (o2SC). Design, Setting, and Participants: This multicenter, placebo-controlled randomized clinical trial was conducted in 19 intensive care units (ICUs) in France from April 2020 to January 2021. Eligible patients were consecutive ICU-admitted adults with COVID-19 AHRF. Randomization used a 2 × 3 factorial design for dexamethasone and oxygenation strategies; patients not eligible for at least 1 oxygenation strategy and/or already receiving invasive mechanical ventilation (IMV) were only randomized for dexamethasone. All patients were followed-up for 60 days. Data were analyzed from May 26 to July 31, 2021. Interventions: Patients received standard dexamethasone (dexamethasone-phosphate 6 mg/d for 10 days [or placebo prior to RECOVERY trial results communication]) or high-dose dexamethasone (dexamethasone-phosphate 20 mg/d on days 1-5 then 10 mg/d on days 6-10). Those not requiring IMV were additionally randomized to o2SC, CPAP, or HFNo2. Main Outcomes and Measures: The main outcomes were time to all-cause mortality, assessed at day 60, for the dexamethasone interventions, and time to IMV requirement, assessed at day 28, for the oxygenation interventions. Differences between intervention groups were calculated using proportional Cox models and expressed as hazard ratios (HRs). Results: Among 841 screened patients, 546 patients (median [IQR] age, 67.4 [59.3-73.1] years; 414 [75.8%] men) were randomized between standard dexamethasone (276 patients, including 37 patients who received placebo) or high-dose dexamethasone (270 patients). Of these, 333 patients were randomized among o2SC (109 patients, including 56 receiving standard dexamethasone), CPAP (109 patients, including 57 receiving standard dexamethasone), and HFNo2 (115 patients, including 56 receiving standard dexamethasone). There was no difference in 60-day mortality between standard and high-dose dexamethasone groups (HR, 0.96 [95% CI, 0.69-1.33]; P = .79). There was no significant difference for the cumulative incidence of IMV criteria at day 28 among o2 support groups (o2SC vs CPAP: HR, 1.08 [95% CI, 0.71-1.63]; o2SC vs HFNo2: HR, 1.04 [95% CI, 0.69-1.55]) or 60-day mortality (o2SC vs CPAP: HR, 0.97 [95% CI, 0.58-1.61; o2SC vs HFNo2: HR, 0.89 [95% CI, 0.53-1.47]). Interactions between interventions were not significant. Conclusions and Relevance: In this randomized clinical trial among ICU patients with COVID-19-related AHRF, high-dose dexamethasone did not significantly improve 60-day survival. The oxygenation strategies in patients who were not initially receiving IMV did not significantly modify 28-day risk of IMV requirement. Trial Registration: ClinicalTrials.gov Identifier: NCT04344730; EudraCT: 2020-001457-43.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Respiratory Insufficiency , Adult , Aged , COVID-19/therapy , Dexamethasone/therapeutic use , Female , Humans , Intensive Care Units , Male , Middle Aged , Oxygen , Phosphates , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
12.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35861550

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Protein Binding , Pyridines/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
13.
Ann Intern Med ; 175(6): 831-837, 2022 06.
Article in English | MEDLINE | ID: mdl-35286147

ABSTRACT

BACKGROUND: At the end of 2021, the B.1.1.529 SARS-CoV-2 variant (Omicron) wave superseded the B.1.617.2 variant (Delta) wave. OBJECTIVE: To compare baseline characteristics and in-hospital outcomes of patients with SARS-CoV-2 infection with the Delta variant versus the Omicron variant in the emergency department (ED). DESIGN: Retrospective chart reviews. SETTING: 13 adult EDs in academic hospitals in the Paris area from 29 November 2021 to 10 January 2022. PATIENTS: Patients with a positive reverse transcriptase polymerase chain reaction (RT-PCR) test result for SARS-CoV-2 and variant identification. MEASUREMENTS: Main outcome measures were baseline clinical and biological characteristics at ED presentation, intensive care unit (ICU) admission, mechanical ventilation, and in-hospital mortality. RESULTS: A total of 3728 patients had a positive RT-PCR test result for SARS-CoV-2 during the study period; 1716 patients who had a variant determination (818 Delta and 898 Omicron) were included. Median age was 58 years, and 49% were women. Patients infected with the Omicron variant were younger (54 vs. 62 years; difference, 8.0 years [95% CI, 4.6 to 11.4 years]), had a lower rate of obesity (8.0% vs. 12.5%; difference, 4.5 percentage points [CI, 1.5 to 7.5 percentage points]), were more vaccinated (65% vs. 39% for 1 dose and 22% vs. 11% for 3 doses), had a lower rate of dyspnea (26% vs. 50%; difference, 23.6 percentage points [CI, 19.0 to 28.2 percentage points]), and had a higher rate of discharge home from the ED (59% vs. 37%; difference, 21.9 percentage points [-26.5 to -17.1 percentage points]). Compared with Delta, Omicron infection was independently associated with a lower risk for ICU admission (adjusted difference, 11.4 percentage points [CI, 8.4 to 14.4 percentage points]), mechanical ventilation (adjusted difference, 3.6 percentage points [CI, 1.7 to 5.6 percentage points]), and in-hospital mortality (adjusted difference, 4.2 percentage points [CI, 2.0 to 6.5 percentage points]). LIMITATION: Patients with COVID-19 illness and no SARS-CoV-2 variant determination in the ED were excluded. CONCLUSION: Compared with the Delta variant, infection with the Omicron variant in patients in the ED had different clinical and biological patterns and was associated with better in-hospital outcomes, including higher survival. PRIMARY FUNDING SOURCE: None.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Paris/epidemiology , Retrospective Studies , SARS-CoV-2/genetics
15.
Int J Infect Dis ; 118: 144-149, 2022 May.
Article in English | MEDLINE | ID: mdl-35248716

ABSTRACT

BACKGROUND: Rhinoviruses are commonly considered simple "common cold" agents. The link between their molecular epidemiology and patient clinical presentation and outcomes remains unclear in adult populations. MATERIALS/METHODS: All nasopharyngeal or bronchoalveolar lavages were screened using multiplex PCR in 3 Parisian hospitals from January 2018 to September 2018. For all detected rhinoviruses, the VP2/VP4 region was subtyped by sequencing. RESULTS: The study included 178 unique patients who were positive for human rhinovirus (HRV). They were primarily men (56%), with a median age of 62.2 years (IQR: 46.8-71.4), frequently presenting chronic respiratory diseases (56%) and/or immunosuppression (46%). Of these, 63% were admitted for respiratory distress, including 25% for pneumonia; 95 (53%), 27 (15%), and 56 (32%) were positive for HRV-A, -B, and -C, respectively. HRV-B appeared to be more associated with immunosuppressive treatments (58% vs 30% and 36% of patients for HRV-A and -C, respectively, p = 0.038), higher coinfection rates (54% vs 34% and 23%, p = 0.03), and higher intensive care unit (ICU) admission rates (35% vs 17% and 13%, p = 0.048). Conversely, HRV-A was more frequently associated with pneumonia (54% vs 31% and 11% for HRV-B and -C, respectively, p = 0.01). CONCLUSIONS: This study highlights the high proportion of chronic respiratory diseases or immunosuppression among hospitalized patients infected with a rhinovirus. IMPORTANT: Human rhinoviruses (HRVs) are frequently detected in patients hospitalized for respiratory distress. Understanding their molecular differences is crucial to finding target treatments and improving patient outcomes.


Subject(s)
Picornaviridae Infections , Respiratory Distress Syndrome , Respiratory Tract Infections , Adult , Aged , Enterovirus , Humans , Male , Middle Aged , Phylogeny , Picornaviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics
16.
Euro Surveill ; 27(6)2022 Feb.
Article in English | MEDLINE | ID: mdl-35144725

ABSTRACT

BackgroundThe COVID-19 pandemic has led to an unprecedented daily use of RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of quantification cycles (Cq), is debated because of strong potential biases.AimWe explored the possibility to use Cq values from SARS-CoV-2 screening tests to better understand the spread of an epidemic and to better understand the biology of the infection.MethodsWe used linear regression models to analyse a large database of 793,479 Cq values from tests performed on more than 2 million samples between 21 January and 30 November 2020, i.e. the first two pandemic waves. We performed time series analysis using autoregressive integrated moving average (ARIMA) models to estimate whether Cq data information improves short-term predictions of epidemiological dynamics.ResultsAlthough we found that the Cq values varied depending on the testing laboratory or the assay used, we detected strong significant trends associated with patient age, number of days after symptoms onset or the state of the epidemic (the temporal reproduction number) at the time of the test. Furthermore, knowing the quartiles of the Cq distribution greatly reduced the error in predicting the temporal reproduction number of the COVID-19 epidemic.ConclusionOur results suggest that Cq values of screening tests performed in the general population generate testable hypotheses and help improve short-term predictions for epidemic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans , Pandemics , Reverse Transcriptase Polymerase Chain Reaction
17.
Crit Care Med ; 50(7): e643-e648, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35167501

ABSTRACT

OBJECTIVES: To describe the prevalence, associated factors, and clinical impact of an initial negative herpes simplex virus (HSV) polymerase chain reaction (PCR) in critically ill patients with PCR-proven HSV encephalitis. DESIGN: Retrospective multicenter study from 2007 to 2017. SETTING: Forty-seven French ICUs. PATIENTS: Critically ill patients admitted to the ICU with possible/probable acute encephalitis and a positive cerebrospinal fluid (CSF) PCR for HSV. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We included 273 patients with a median Glasgow Coma Scale score of 9 (6-12) at ICU admission. CSF HSV PCR was negative in 11 cases (4%), exclusively in lumbar punctures (LPs) performed less than 4 days after symptoms onset. Patients with an initial negative PCR presented with more frequent focal neurologic signs (4/11 [36.4%] vs 35/256 [13.7%]; p = 0.04) and lower CSF leukocytosis (4 cells/mm3 [3-25 cells/mm3] vs 52 cells/mm3 [12-160 cells/mm3]; p < 0.01). An initial negative PCR was associated with an increased delay between LP and acyclovir treatment (3 d [2-7 ] vs 0 d [0-0 d]; p < 0.01) and was independently associated with a poor neurologic outcome at hospital discharge (modified Rankin Scale score ≥ 4) (adjusted odds ratio, 9.89; 95% CI, 1.18-82.78). CONCLUSIONS: In severe herpes simplex encephalitis, initial negative CSF HSV PCR occurred in 4% of cases and was independently associated with worse neurologic outcome at hospital discharge. In these patients, a systematic multimodal diagnostic approach including early brain MRI and EEG will help clinicians avoid delayed acyclovir initiation or early inappropriate discontinuation.


Subject(s)
Encephalitis, Herpes Simplex , Acyclovir/therapeutic use , Cerebrospinal Fluid , Critical Illness , Encephalitis, Herpes Simplex/diagnosis , Encephalitis, Herpes Simplex/drug therapy , Encephalitis, Herpes Simplex/epidemiology , Humans , Polymerase Chain Reaction , Prevalence , Simplexvirus/genetics
18.
Sci Rep ; 12(1): 1094, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058525

ABSTRACT

France went through three deadly epidemic waves due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing major public health and socioeconomic issues. We proposed to study the course of the pandemic along 2020 from the outlook of two major Parisian hospitals earliest involved in the fight against COVID-19. Genome sequencing and phylogenetic analysis were performed on samples from patients and health care workers (HCWs) from Bichat (BCB) and Pitié-Salpêtrière (PSL) hospitals. A tree-based phylogenetic clustering method and epidemiological data were used to investigate suspected nosocomial transmission clusters. Clades 20A, 20B and 20C were prevalent during the spring wave and, following summer, clades 20A.EU2 and 20E.EU1 emerged and took over. Phylogenetic clustering identified 57 potential transmission clusters. Epidemiological connections between participants were found for 17 of these, with a higher proportion of HCWs. The joint presence of HCWs and patients suggest viral contaminations between these two groups. We provide an enhanced overview of SARS-CoV-2 phylogenetic changes over 2020 in the Paris area, one of the regions with highest incidence in France. Despite the low genetic diversity displayed by the SARS-CoV-2, we showed that phylogenetic analysis, along with comprehensive epidemiological data, helps to identify and investigate healthcare associated clusters.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , Middle Aged , Paris/epidemiology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...